数学笔记12——常微分方程和分离变量

 常微分方程

  含有未知函数的导数,如

  的方程是微分方程。 一般的,凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。本文主要介绍常微分方程。

  概念往往令人迷惑,还是看看实际的例子:

  目标是求解x和y的关系。将等式转换:

  这就是最终答案。

  实际上,常微分的求解过程就是利用不定积分的知识:

分离变量

  分离变量是求解常微分方程的一种方法,适用于dy/dx = f(x)g(y)的形式。先看下面的示例:

  在物理学中它有一个专有名称,叫做“淹没算符”。此处没必要去纠结物理学概念,仅需要在数学上求解这个方程。但这个表达式和以往所见的微分表达式不一样,首先将方程展开,将其转换为我们熟悉的形式:

  想要求解方程,需要继续转换:

  这就是求得的答案。

  但上述答案只求解了y>0的情况,y≤0时尚未考虑。可以通过求导来验证答案是否是通解:

  令a为任意常数,将解转换为y=ae-x^2/2,当a≠0时,实际上a=±A

  答案是通解,最终答案是y=ae-x^2/2,a是任意常数。

  实际上该答案就是正态分布函数,也就是著名的高斯函数,其原型:

  其中a,b,c∈R

  高斯函数的图形在形状上像一个倒悬着的钟。a表示得到曲线的高度,b是指曲线中心线在x轴的偏移,c半峰宽度(函数峰值一半处相距的宽度)。

  当b=0,c=0,a=5时,图像如下:

y=ae-x^2/2

示例

示例1

  曲线切线与经过原点的直线相交,曲线在交点的切线是直线斜率的两倍,求曲线表达式。

  首先将上述文字转换为方程,设交点是(x,y),曲线是y=f(x),则曲线切线的斜率为y’,直线斜率为y/x,于是得到下面关系式:

  通过验证寻找通解,设a=±A,则a为非零的任意常数,y=ax2,验证该解:

  答案符合最初等式。最终结果是y=ax2,a∈R,x≠0

  当a=1时,曲线y= x2,y’=2x;则在(2,4)点的切线斜率是4,切线是y=4x+b;将(2,4)代入切线,4=4×2+b,b=-4,在(2,4)点的切线为y=4x-4。下图是满足条件的曲线:

  y=ax2实际上是一族曲线:

y=ax2

示例2

  微分方程xdy/dx = (x2+x)(y2+1),求y=f(x)

 

  此处需要复习一下三角函数的求导公式:

  由上面的公式15,

  验证,已知三角函数公式tan2x+1=sec2x

示例3

  d2y/dx2=6x,求y=f(x),y=f(x)在(1,1)点有水平切线。

  题目中涉及到二阶导数和一个限制条件。

  通过限制条件得知:

  将(1,1)代入上式,1 = 1 – 3 + C2,C2 = 3

  最终,y = x3 – 3x + 3

 总结

  1. 使用不定积分求解常微分方程
  2. 分离变量是求解常微分方程的一种方法,适用于dy/dx = f(x)g(y)的形式

  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

相关推荐
<p> <span style="font-size:14px;color:#E53333;">限时福利1:</span><span style="font-size:14px;">购课进答疑群专享柳峰(刘运强)老师答疑服务</span> </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;"></span> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>为什么需要掌握高性能的MySQL实战?</strong></span> </p> <p> <span><span style="font-size:14px;"><br /> </span></span> <span style="font-size:14px;">由于互联网产品用户量大、高并发请求场景多,因此对MySQL的性能、可用性、扩展性都提出了很高的要求。使用MySQL解决大量数据以及高并发请求已经是程序员的必备技能,也是衡量一个程序员能力薪资的标准之一。</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">为了让大家快速系统了解高性能MySQL核心知识全貌,我为你总结了</span><span style="font-size:14px;">「高性能 MySQL 知识框架图」</span><span style="font-size:14px;">,帮你梳理学习重点,建议收藏!</span> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006031401338860.png" /> </p> <p> <br /> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>【课程设计】</strong></span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">课程分为四大篇章,将为你建立完整的 MySQL 知识体系,同时将重点讲解 MySQL 底层运行原理、数据库的性能调优、高并发、海量业务处理、面试解析等。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;"></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>一、性能优化篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括经典 MySQL 问题剖析、索引底层原理事务与锁机制。通过深入理解 MySQL 的索引结构 B+Tree ,学员能够从根本上弄懂为什么有些 SQL 走索引、有些不走索引,从而彻底掌握索引的使用优化技巧,能够避开很多实战中遇到的“坑”。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>二、MySQL 8.0新特性篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括窗口函数通用表表达式。企业中的许多报表统计需求,如果不采用窗口函数,用普通的 SQL 语句是很难实现的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>三、高性能架构篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括主从复制读写分离。在企业的生产环境中,很少采用单台MySQL节点的情况,因为一旦单个节点发生故障,整个系统都不可用,后果往往不堪设想,因此掌握高可用架构的实现是非常有必要的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>四、面试篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">程序员获得工作的第一步,就是高效的准备面试,面试篇主要从知识点回顾总结的角度出发,结合程序员面试高频MySQL问题精讲精练,帮助程序员吊打面试官,获得心仪的工作机会。</span> </p>
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页